15 research outputs found

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Real-time QoS Routing Scheme in SDN-based Robotic Cyber-Physical Systems

    Full text link
    Industrial cyber-physical systems (CPS) have gained enormous attention of manufacturers in recent years due to their automation and cost reduction capabilities in the fourth industrial revolution (Industry 4.0). Such an industrial network of connected cyber and physical components may consist of highly expensive components such as robots. In order to provide efficient communication in such a network, it is imperative to improve the Quality-of-Service (QoS). Software Defined Networking (SDN) has become a key technology in realizing QoS concepts in a dynamic fashion by allowing a centralized controller to program each flow with a unified interface. However, state-of-the-art solutions do not effectively use the centralized visibility of SDN to fulfill QoS requirements of such industrial networks. In this paper, we propose an SDN-based routing mechanism which attempts to improve QoS in robotic cyber-physical systems which have hard real-time requirements. We exploit the SDN capabilities to dynamically select paths based on current link parameters in order to improve the QoS in such delay-constrained networks. We verify the efficiency of the proposed approach on a realistic industrial OpenFlow topology. Our experiments reveal that the proposed approach significantly outperforms an existing delay-based routing mechanism in terms of average throughput, end-to-end delay and jitter. The proposed solution would prove to be significant for the industrial applications in robotic cyber-physical systems

    Managing Industrial Communication Delays with Software-Defined Networking

    Full text link
    Recent technological advances have fostered the development of complex industrial cyber-physical systems which demand real-time communication with delay guarantees. The consequences of delay requirement violation in such systems may become increasingly severe. In this paper, we propose a contract-based fault-resilient methodology which aims at managing the communication delays of real-time flows in industries. With this objective, we present a light-weight mechanism to estimate end-to-end delay in the network in which the clocks of the switches are not synchronized. The mechanism aims at providing high level of accuracy with lower communication overhead. We then propose a contract-based framework using software-defined networking where the components are associated with delay contracts and a resilience manager. The proposed resilience management framework contains: (1) contracts which state guarantees about components behaviors, (2) observers which are responsible to detect contract failure (fault), (3) monitors to detect events such as run-time changes in the delay requirements and link failure, (4) control logic to take suitable decisions based on the type of the fault, (5) resilience manager to decide response strategies containing the best course of action as per the control logic decision. Finally, we present a delay-aware path finding algorithm which is used to route/reroute the real-time flows to provide resiliency in the case of faults and, to adapt to the changes in the network state. Performance of the proposed framework is evaluated with the Ryu SDN controller and Mininet network emulator

    A life-course perspective of sex trafficking among the Bedia caste of India

    Get PDF
    Thousands of Indian women and girls enter the commercial sex industry (CSI) annually based solely on membership in particular castes (e.g., Bedia, Nat). CSI-involved females bear the burden of sustaining entire family units on money earned in the sex trade; it is a life-long responsibility with negligible social status or personal indemnity. Based on the life-course developmental theory (Elder, Jr. 1994, 1998) this investigation was intended to examine trafficked women’s experiences within the commercial sex industry across time. Beyond the CSI, we were equally interested in experiences with factors that could promote well-being (i.e., social support) and normative developmental transitions including education attainment and motherhood. To that end, three questions were posed. First, to what extent do factors surrounding CSI entry and continued involvement differ through time among CSI-involved Bedia? Second, how do CSI-involved Bedia describe social network composition and perceived support through time? Finally, are differences detectable, through time, in CSI-involved Bedia women’s experiences with normative developmental transitions including education attainment and motherhood? Interview data were collected from 31 Bedia females (age range 17 – 65 years) residing in rural Madhya Pradesh, India. To examine change through time, participants were divided into cohorts based on age and time involved in the commercial sex industry. Data were then analyzed within and across cohorts with particular attention to cohort-related experiential differences. Policy implications and suggestions for continued research are presented

    ML-Based Delay Attack Detection and Isolation for Fault-Tolerant Software-Defined Industrial Networks

    No full text
    Traditional security mechanisms find difficulties in dealing with intelligent assaults in cyber-physical systems (CPSs) despite modern information and communication technologies. Furthermore, resource consumption in software-defined networks (SDNs) in industrial organizations is usually on a larger scale, and the present routing algorithms fail to address this issue. In this paper, we present a real-time delay attack detection and isolation scheme for fault-tolerant software-defined industrial networks. The primary goal of the delay attack is to lower the resilience of our previously proposed scheme, SDN-resilience manager (SDN-RM). The attacker compromises the OpenFlow switch and launches an attack by delaying the link layer discovery protocol (LLDP) packets. As a result, the performance of SDN-RM is degraded and the success rate decreases significantly. In this work, we developed a machine learning (ML)-based attack detection and isolation mechanism, which extends our previous work, SDN-RM. Predicting and labeling malicious switches in an SDN-enabled network is a challenge that can be successfully addressed by integrating ML with network resilience solutions. Therefore, we propose a delay-based attack detection and isolation scheme (DA-DIS), which avoids malicious switches from entering the routes by combining an ML mechanism along with a route-handoff mechanism. DA-DIS increases network resilience by increasing success rate and network throughput

    Applications in security and evasions in machine learning : a survey

    No full text
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Primary renal angiosarcoma

    No full text
    Primary angiosarcoma of the kidney is a rare tumor with only a few case reports in the literature. Management is not standardized and the prognosis is poor. However, clinicians need to be aware of this uncommon entity
    corecore